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PREDICTION O F  THE INVERSION LOAD 

OF A CIRCULAR TUBE 

By LeRoy R.  Guist and Donald P. Marble 
Ames Research Center 

SUMMARY 

This study i s  concerned with t h e  p l a s t i c  deformation process encountered 
i n  t h e  inversion or turning inside out of a c i r cu la r  tube. The load required 
t o  cause inversion i s  derived ana ly t i ca l ly  from elementary expressions f o r  
p l a s t i c  energy absorbed during uniaxial  p l a s t i c  s t ra in ing .  Analytical  r e su l t s  
a r e  compared w i t h  t he  r e s u l t s  of experiments conducted concurrently, and with 
previously reported results. Experimental values of inversion load agreed 
with ana ly t i ca l  predictions within 10 t o  30 percent. 

INTRODUCTION 

In t e re s t  i n  t he  "inversion tube" arose from consideration of energy 
absorbing devices su i tab le  f o r  use i n  the  landing s t ruc ture  of space vehicles .  
A discussion of some of t he  other concepts being considered f o r  so f t  landings 
of space vehicles is  presented i n  reference 1. The use of an inversion tube 
t o  absorb energy i s  suggested i n  reference 2 and appl icat ions of t h e  inversion 
tube i n  a lunar landing system are discussed i n  reference 3. 

The inversion process involves the  turning inside out of a tube acted 
upon by a compressive load. Experimental r e s u l t s  indicate t h a t  the  process is  
feas ib le  only for ce r t a in  very duc t i l e  materials and only for a ce r t a in  range 
of tube thickness t o  diameter r a t i o s .  The inversion process i s  shown schemat- 
i c a l l y  in  f igure  1, f o r  both inside-out and outside-in configurations. Exper- 
imental r e s u l t s  indicate  t h a t  t he  process occurs at constant load, and the  
f i n a l  diameter has an equilibrium value depending upon i n i t i a l  diameter and 
thickness.  

The primary purpose of t h i s  study w a s  t o  predict  ana ly t i ca l ly  the  a x i a l  
load required t o  cause inversion, and t o  provide su f f i c i en t  experimental da ta  
t o  t es t  the  v a l i d i t y  o f  the  analysis .  
dynamic propert ies  and consider some design var ia t ions .  Only the  inside-out 
configuration i s  discussed i n  t h i s  repor t .  

Secondary purposes were t o  study 

SYMBOLS 

A cross-sectional area of tube w a l l  

c curvature parameter defined i n  f igure  3 
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o r ig ina l  mean diameter of tube 

mean diameter of tube after inversion 

p l a s t i c  s t r a i n  

t o t a l  length of tube 

inversion load 

thickness of tube 

t o t a l  p l a s t i c  s t r a i n  energy absorbed 

volume of mater ia l  p l a s t i c a l l y  deformed 

t r a v e l  of inversion load 

length of tube experiencing p l a s t i c  deformation 

material densi ty  

per fec t ly  p l a s t i c  y ie ld  s t r e s s  

ANALYSIS 

The ana ly t i ca l  model is  a c i r cu la r  cylinder of thickness t i n  which 
each increment of  length experiences p l a s t i c  bending and hoop extension while 
passing from i t s  o r ig ina l  diameter D through a half  to ro ida l  shape t o  i t s  
f i n a l  diameter D i  ( f i g .  2 ) .  
curvature suddenly a t  A, has a constant curvature through the  toro ida l  region 
while expanding i n  the  hoop direct ion,  and then s t ra ightens suddenly a t  B. 
Both t h e  curvature o f  the  bending process and the  amount of hoop extension a r e  
expressed as functions of t he  curvature parameter c .  The following assump- 
t i o n s  have been made i n  t h i s  analysis .  

It i s  assumed t h a t  the  or ig ina l  tube assumes 

1. The material is  per fec t ly  p l a s t i c  and the  e f f ec t  of b i ax ia l  stresses 
on the  y ie ld  s t r e s s  is neglected. 

2 .  The work done by the  inversion load is  e n t i r e l y  diss ipated as inter-  
n a l  p l a s t i c  work i n  the  three  processes mentioned above. 

3. Both thickness changes and changes i n  axial length a r e  ignored. 
(Corrections f o r  these e f f ec t s  a r e  discussed under experimental r e s u l t s  b )  

4. The inversion process is  completely independent of a x i a l  t r a v e l  x, 
occurring a t  constant inner and outer diameter. 
diameter seeks an equilibrium value determined by the  curvature parameter 

It is  assumed tha t  t he  outer 
c .  

2. The inversion process occurs a t  constant load. 
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The load required t o  cause inversion w a s  derived by two methods: (1) 
equating the  incremental work done by the  inversion load t o  the  incremental 
p l a s t i c  energy absorbed, and (2) sunnning forces  and moments on an elemental 
r a d i a l  segment of t he  to ro ida l  portion of the  model. 
fo r  inversion load were ident ica l ,  but t he  work method w i l l  be presented 
because of i ts  grea te r  s implici ty .  

The resu l t ing  expressions. 

Derivation of Inversion Load Prom P l a s t i c  S t r a in  Energy Absorbed 

The p l a s t i c  energy U absorbed while the  inversion load P has moved a 
dis tance x ( f i g .  3) is  

u = Px (1 1 
In view of the  ana ly t i ca l  model defined e a r l i e r ,  it is c lear  t ha t  U cons is t s  
of energy absorbed i n  three  separate processes: bending a t  A, extension from 
A t o  B, and bending a t  B. It i s  assumed t h a t  t he  bending processes a t  A and 
B a r e  ident ica l ,  hence,the combined bending energy i s  simply twice the  energy 
absorbed i n  bending a t  A. The p l a s t i c  work is expressed as the product of 
p l a s t i c  s t r e s s  e, and the  volume of mater ia l  deformed, op, the  average s t r a i n  

where eB and eE 
t ive ly ,  and xA 

The p l a s t i c  
expressed a s  the  
Prom f igure  3 

where c i s  the  

a r e  the  average bending and extensional s t r a ins ,  respec- 
is the  length of mater ia l  inverted.  

extensional s t r a i n  eE which occurs i n  the  hoop d i rec t ion  is  
change i n  circumference divided by the or ig ina l  circumference. 

d i - d  D i - D  D t - 2 c t - D  - - 
io D D eE = 

t 
E eE = 2c 

curvature parameter defined i n  f igu re  3. 

The expression f o r  average p l a s t i c  bending s t r a i n  involves the  assump- 
t i o n  of a l i n e a r  var ia t ion  of s t r a i n  across the  tube thickness,  which implies 
an average s t r a i n  exact ly  half  of t he  extreme fiber s t r a i n .  
s t r a i n  from f igure  3 is 

The outer f i b e r  

hence, 

eg = 1/2c (4) 
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It i s  apparent from f igure  2 t h a t  under equilibrium conditions, XA = (1/2)x; 
hence, equation ( 3 )  becomes 

u = (. 1 + F) x 

and from equation (1) : 

P = 2 ADP (. 1 + ?.> 2ct  

Equation (6) i s  not a purely ana ly t i ca l  expression since it contains the  
parameter c which i s  not defined i n  terms of model parameters. Equation (7), 
however, indicates  t h a t  t h e  p l a s t i c  energy absorbed i n  bending i s  inversely 
proportional t o  
c .  Hence, the function i n  parentheses has a minimum value with respect t o  c 
and it is  reasonable t o  hypothesize tha t  t he  process w i l l  occur a t  t h i s  mini- 
mum value. The der ivat ive of equation (6) with respect t o  c is  zero a t  the  
minimizing value of c 

c while t he  extensional energy absorbed is  proportional t o  

Combining equations (7) and ( 8 )  yie lds  

3 /2D 1/2 
P = d t a  p = 4.44 apt 

P D  (9) 

which i s  a simple and useful expression f o r  inversion load i n  terms of model 
parameters alone. 

A measure of the  energy absorbing capacity of t he  inversion tube is  given 
by spec i f ic  energy absorption (SEA) which i s  the  energy absorbed divided by 
t h e  weight of t he  specimen. A specimen of length L absorbs an amount of 
energy PL as the  load moves a dis tance L, 
pV = pAL; hence, from equation (9), 

and the  specimen weight is  
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COMPARISON OF ANALYTICAL AND EXPERIMENTAL FG3SULTS 

The tests conducted a t  Ames Research Center were in3ended t o  substant ia te  
and extend the  work reported i n  reference 2.  
of values of t / D ,  considered l a rge r  sca le  specimens, investigated the  e f f ec t s  
of loading rate, and considered specimens with tapering w a l l  thickness.  
Secondary t e s t i n g  included determining material s t ress -s t ra in  propert ies  and a 
spec ia l  t es t  simulating only the  bending process involved i n  inversion. 

Ames t e s t i n g  extended the  range 

.- Equilibrium Value of c 

A comparison of experimental values of t he  curvature parameter c and the  
minimum value given by equation (8) is  shown i n  f igure  4. The predicted value 
is seen t o  be grea te r  than the  experimental value by a fac tor  of near ly  2 .  
However, examination of equation (6) indicates  t h a t  t he  term i n  parentheses i s  
a very weak function of c with the  result t h a t  a la rge  discrepancy i n  c 
has a small e f f ec t  on predicted inversion load. Hence, even though the  analyt-  
i c a l  model i s  not adequate t o  predict  t h e  equilibrium value of c accurately,  
it provides a useful  expression fo r  t h e  inversion load.  

The change i n  thickness and length of inversion specimens w a s  determined 
by measurements before and a f t e r  inversion. It w a s  found t h a t  t he  percentage 
thickness decrease w a s  approximately equal t o  the  percentage length decrease. 
Furthermore, t he  percentage change i n  e i t h e r  case w a s  approximately half  t he  
hoop s t r a i n ,  thus sa t i s fy ing  the  condition t h a t  material volume must remain 
constant.  Since these two changes have opposing e f f ec t s  upon inversion load, 
it i s  f e l t  t h a t  assuming constant thickness and length is  a reasonable 
approximation. 

Inversion Load 

Figures 2 and 6 and t ab le  I compare ana ly t ica l  and experimental values of 
inversion load p lo t ted  against  t .  Figure 5 compares inversion load data  from 
Ames t e s t s  of  1-inch diameter tubing with ana ly t ica l  values while f igure  6 
s imilar ly  compares data  from reference 2.  
data  from Ames tes ts  of 2-inch and 8-inch diameter specimens. 
isons,  two methods of predicting inversion load were used. In one, the purely 
ana ly t i ca l  value obtained f rom equation (9) was used, and in  the  other,  equa- 
t i o n  (7) w a s  used with t h e  experimental value of c given i n  f igure  4. It is 
seen t h a t  t he  purely ana ly t i ca l  predict ion is  i n  e r ro r  by 20 t o  30 percent 
while t he  predict ion using t h e  experimental value of c is  i n  e r ro r  by 10 t o  
20 percent.  
although it i s  suspected t h a t  it is  due t o  an e f fec t ive  higher y ie ld  point than 
the  simple t e n s i l e  y ie ld  point assumed i n  the  analysis .  
stress 
of a per fec t ly  p l a s t i c  stress-strain diagram t o  the  experimental s t ress -s t ra in  
p lo t  f o r  t he  material used i n  the  specimens. 
curves f o r  both 3003-Hl4 and 3003-Hl12 aluminum and the  per fec t ly  p l a s t i c  dia- 
grams used t o  idea l ize  them. All aluminum specimens considered i n  t h i s  report  
with the  exception of t he  8-inch diameter ones (which were H l l 2 )  were of 
3003-Hl4 a l loy .  
3003-Hl4 a l loy  attains s t r a i n s  as high as 60 percent while t h e  curve shown in 

Table I compares predicted load with 
I n  these compar- 

No explanation could be found t o  account f o r  t h i s  discrepancy, 

The value of y ie ld  
op used i n  f igures  3 and 6 and t a b l e  I was obtained from a bes t  f i t  

Figure 7 shows s t ress -s t ra in  

It i s  important t o  note the  mechanism whereby the  

5 



11llll111l IIIIIII I I1 I 

f igure  7 indicates  approximately 4-percent s t r a i n  t o  f a i l u r e .  
discrepancy can be resolved by noting t h a t  the curves of f igure 7 indicate  
average s t r a i n  over a 2-inch gage length while t he  s t r a i n s  occurring during 
inversion a r e  comparable t o  those i n  the necked-down portion of a t e n s i l e  
specimen. To demonstrate t h i s ,  t h e  broken l i n e  in f igure  7 was taken from mea- 
surements of s t re tching "within the  neck'' of t he  same specimen used f o r  t h e  
so l id  curve. Since even these values a re  averages over some small length,  t he  
ac tua l  s t r a ins  a t ta ined  during inversion could be even higher. In  the  case of 
t h e  3003-Hl4 a l loy ,  however, the material  never reaches the  "necking down" 
s t r e s s  since t h i s  a l l o y  is  i n  the  nearly annealed condition. 

This apparent 

Inversion of F la t  S t r i p s  

Special t e s t s  simulating only the bending process involved i n  inversion 
were made as shown i n  f igure  8 with f l a t  s t r i p s  of 3003-Hl4 aluminum. The 
purpose of these t e s t s  w a s  t o  determine the  accuracy of the  first t e r m  i n  the 
parentheses of equation (7) as a function of The spacing of t h e  outer 
l egs  of the  f ix tu re  w a s  a l t e r ed  t o  simulate d i f f e ren t  values of c .  Force 
measurements from these tests are plot ted i n  f igure  8 superimposed upon the 
curve representing the  bending component of force given by equation ( 7 ) .  Com- 
parison of these curves indicates  good agreement f o r  higher values of c but 
increasing e r ro r  toward lower values. This might be expected since the e f f ec t  
of combined s t r e s ses  ignored i n  t h e  bending model becomes more important as 
bending s t r a i n  l eve l s  increase.  It is f e l t  t h a t  t he  results given i n  f igure 8 
provide evidence t h a t  t he  ana ly t ica l  model is adequate fo r  engineering predic- 
t i ons  of inversion load. 

c .  

Effect  of Loading Speed 

During the course of t e s t i n g  inversion specimens, it w a s  noted t h a t  t he  
inversion load increased w i t h  deformation speed even a t  r e l a t ive ly  l o w  speeds. 
Tests were performed a t  speeds from 
The range from t o  approximately 1.0 f t / s ec  w a s  investigat@d by means of a 
high-speed, closed-loop, hydraulic tes t  machine while t h e  range from 7.5 t o  
30 f t / sec  was studied i n  drop tests. 
3003-Hl4 aluminum tubes with 2-inch 0.d. and 1/16-inch w a l l .  These r e s u l t s  
indicate an increase of as high as 13 percent above s t a t i c  loads i n  t h e  speed 
range t e s t ed .  It is  f e l t  t h a t  higher speed tests would be exceedingly d i f f i -  
c u l t  t o  in te rpre t ,  i n  terms of model propert ies ,  because of t he  t rans ien t  
dynamic behavior of the specimen a t  impact. 

t o  30 f t / s ec  t o  define t h i s  var ia t ion.  

Results are shown i n  f igure  9 f o r  

Tapered Inversion Specimen 

In an e f f o r t  t o  devise an energy absorber with a nsofteningn force defor- 
mation curve and a more f a i l u r e  proof design, the  inversion specimen whose 
thickness diminished along i t s  length w a s  devised. A s  seen i n  f igure  10 , such 
a specimen i s  less l i k e l y  t o  f a i l  than a uniform tube since t e n s i l e  s t r e s ses  
a r e  carr ied i n  sections which are always thicker  than the  section being 
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deformed p la s t i ca l ly .  The force deformation curve is ,  as expected, softening 
i n  t h a t  invert ing force decreases with increasing deflection,thereby decreasing 
the  tendency f o r  e l a s t i c  rebound. 

Energy Absorbing Efficiency 

The spec i f ic  energy absorption of t he  inversion tube is shown i n  f igure  ll 
f o r  t he  predicted inversion load as a function of t / D  ,g iven by equation (10). 
This curve indicates  t h a t  g rea te r  e f f ic ienc ies  a r e  achieved as thickness 
increases and a x i a l  s t r e s s  approaches t h e  compressive y ie ld  stress of t he  tube. 

CONCLUDING REMARKS 

Analytical  predictions of t he  inversion load of 3003-Hl4 specimens agree 
with t e s t  data  within 20 t o  30 percent and within 10 t o  20 percent when the  
experimental value of t he  parameter c i s  used i n  the  prediction. Predicted 
values of t he  curvature parameter c a re  greater  than experimental values by 
a fac tor  of near ly  2, but i n  view of t he  f a c t  t h a t  energy absorbed and inver- 
sion load a r e  weak functions of c ,  t h i s  discrepancy i s  not f e l t  t o  be of 
great  significance.  An increase i n  inversion load of  13 percent above the  
"static1'  value of inversion load w a s  obtained fo r  deformation speeds as high 
as 30 f t / sec .  
of inversion load of 3003-Hlk tubes.  
required t o  determine t h e  accuracy of t h i s  prediction f o r  tubes of other 
mater ia ls .  

The analysis  is considered adequate f o r  engineering predictions 
Additional experimental work would be 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  June 16,  1966 
124-08-04-02 
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Diameter 

2-inch 0.d. 

8-1/2-inch o .d. 

TABLE 1.- INVERSION LOAD OF 2-INCH 0 .D AND  INCH 0 .D ALUMINUM TUBES 

Inversion load, lb, and percent e r ro r  

Equation (7) with Experimental Equation (9) c from f igure  4 

2,630 2,060 22 percent 2,380 10.4 percent 

33,000 27,900 20 percent 31,000 11.4 percent 
- 

8 

1111 II 



P 

I 

i' ( a  Inside - out inversion 
I 

(b )  Outside - in inversion 

Figure 1.- Inversion of aluminum tube. 
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P inverting force 
1 

P 

Figure 2 .- Inverting process. 
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t P  

Figure 3 .- Geometry of to ro ida l  region. 
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- Analytical prediction, C =,/& 
Experiment (ref. 2) 

3003-H 14 aluminum, I in. O.D., various wall thickness 

@, 3003-H I4 aluminum, 2 in. 0. D. x 1/16 in. wall t 
0 3003-HI12 aluminum, 8-112 in. 0. D.x 114 in. wall 0 3003-HI12 aluminum, 8-112 in. 0. D.x 114 in. wall \ 
\ 

Figure 4 - Variation of equilibrium curvature parameter, Cm. 
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- Predicted load [eq. (9) with c,, = 21,500 psi] 
- - Experimental load (ref.2,2-15/16 mean 

diam., 3003-H 14 aluminum tubing 
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Figure 6.- Comparison of predicted and experimental inversion loads. 
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3003- H I4 aluminum .500 in. x .065 in. cross section 
-- 3003-H 112 aluminum .200 in.x .400in. cross section 
---- Perfectly plastic curve assumed for 3003 -H 14 
--- Perfectly plastic curve assumed for 3003 -H I12 

I I I I I 1 1 I 1 
0 .04 .O 8 .I2 .I6 -20 .24 .28 .32 .36 

Strain,e 

Figure 7.- Stress strain curves of 3003-Hl4 aluminum. 
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Figure 8.- Inversion of f la t  s t r i p s .  
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Figure 10.- Force versus def lec t ion .  
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D = 21,500 psi 
- p =0.10 Ib/im3 aluminum 
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Figure 11.- Energy absorption eff ic iency.  
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